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 A B S T R A C T

This work investigates to which extent the known substantial differences between technical efficiencies on 
convex and nonconvex technologies translate into different learning possibilities. We also study whether radial 
and nonradial efficiency measures lead to a different learning experience. To our knowledge, these questions 
have never been investigated. Our empirical research is guided by three working hypotheses regarding how the 
analysis of peers facilitates learning by comparing on the one hand convex versus nonconvex technologies, and 
on the other hand radial versus nonradial efficiency measures. These working hypotheses are investigated using 
three distinct metrics: peer count, peer similarity, and peer dominance. We employ five existing secondary data 
sets and one large sample of more than 10,000 observations on Belgian traffic control centres in an effort to 
refute our three working hypotheses using these three metrics. Anticipating our conclusion, the combination 
of the logical, the statistical, and the managerial arguments against convexity is rather overwhelming in our 
data and we think that convexity is an axiom that should be scrutinized in all these three respects in all future 
methodological innovations as well as in empirical applications.
1. Introduction

The estimation of efficiency has meanwhile a long history in eco-
nomics and operations research (see Farrell (1957) and Boles (1966) 
for early contributions and Emrouznejad et al. (2008), Emrouznejad 
and Yang (2018) for surveys). Almost all if not all traditional paramet-
ric, semi-parametric, and nonparametric specifications of technologies 
maintain the convexity axiom on the technology.

Nonconvexities in technology are known to be possible for a rather 
wide variety of reasons (see Mas-Colell (1987) for an overview). First, 
inputs and/or outputs are indivisible. In other words, most inputs 
and outputs are only imperfectly divisible and cannot be varied con-
tinuously as standardly assumed. Second, there is the possibility of 
non-negligible setup-times that translate into positive setup costs due 
to indivisibilities in starting up production. Third, increasing returns to 
scale are possible due to indivisibilities in inputs, learning effects, or or-
ganizational advantages in the internal structure of production. Fourth, 
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negative externalities due to interference between productive activities 
may induce nonconvexities. Furthermore, economies of specialization 
can also violate the traditional convexity axiom: see, e.g., Romer (1990) 
on nonrival inputs in the new growth theory. Finally, aggregating 
distinct convex technologies -in the sense of blueprint books- may yield 
some local nonconvex range (see Hung et al. (2009)). Nonconvexities 
complicate the role of prices in both equilibrium and welfare theories 
(e.g., Mas-Colell (1987)).

In empirical production analysis these reasons for nonconvexities 
have most often been ignored and the convexity axiom has been main-
tained because of the -often implicit- assumption of time divisibility 
(e.g., Shephard (1967, p. 214–215) or Shephard (1970, p. 15)), or sim-
ply because of analytical convenience.1 But, if time is only imperfectly 
divisible (e.g., because of setup times and the associated costs), then 
nonconvexities may well affect both production and cost analysis. This 
is a logical argument questioning convexity.
https://doi.org/10.1016/j.ejor.2025.07.062
Received 14 August 2023; Accepted 29 July 2025
vailable online 7 August 2025 
377-2217/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
https://orcid.org/0000-0003-3358-4332
https://orcid.org/0000-0002-5068-3001
https://orcid.org/0000-0002-4584-2784
https://orcid.org/0000-0002-5306-7685
mailto:k.kerstens@ieseg.fr
mailto:bart.roets@infrabel.be
mailto:bart.roets@ugent.be
mailto:ignace.vandewoestyne@kuleuven.be
mailto:shironz@163.com
https://doi.org/10.1016/j.ejor.2025.07.062
https://doi.org/10.1016/j.ejor.2025.07.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2025.07.062&domain=pdf


K. Kerstens et al. European Journal of Operational Research 329 (2026) 1052–1062 
This negligence of nonconvexities in production and cost analysis 
can -implicitly or explicitly- be interpreted in terms of a belief that 
there is no impact of nonconvexities on the parameters of interest in 
production and cost approaches alike. Few people will deny that there 
is no difference between convex and nonconvex production technolo-
gies. Briec, Kerstens, and Van de Woestyne (2022, p. 738–740) survey 
studies documenting differences in convex and nonconvex efficiency 
decompositions (focusing on technical and scale efficiencies), differ-
ences in productivity growth (Malmquist and Hicks-Moorsteen indices 
on the one hand and Luenberger and Luenberger-Hicks-Moorsteen 
indicators on the other hand are discussed), and differences in ca-
pacity utilization (differences in output-oriented plant capacity, attain-
able output-oriented plant capacity, input-oriented plant capacity, and 
economic cost-based capacity notions are listed).

Only rather recently, specific tests for convexity of the production 
technology have been presented by Kneip et al. (2016) and augmented 
by Simar and Wilson (2020). Empirical applications of this test are, 
among others, found in Apon et al. (2015) on US universities, López-
Torres et al. (2021) on UK schooling, O’Loughlin and Wilson (2021) 
on US local governments, and Wilson (2021) on US banks. All of 
these studies reject convexity, except the first study where for several 
departments the hypothesis of convexity cannot be rejected. This may 
provide a statistical argument questioning convexity.

But, we maintain that the eventual impact of convexity on especially 
cost estimates has rarely if ever been explicitly tested empirically. This 
neglect is disturbing given that there exists a property of the cost 
function that is convex/nonconvex in the outputs when convexity of 
technology is imposed/rejected. Hence, one can only stick to convexity 
if there is substantial evidence that its impact on the majority of 
empirical cost function applications is negligible. It is impossible just 
to assume that the impact of convexity on cost function estimates 
is negligible since information on how well convex cost functions 
approximate nonconvex ones is almost absent. Briec, Kerstens, and Van 
de Woestyne (2022, p. 737–738) list a small selection of studies that 
report the results of convex and nonconvex frontier cost estimates: 
these seem to differ anywhere between 2% and 50%. Thus, these cost 
differences may well be very substantial. This impact of convexity on 
cost estimates serves to further motivate an interest in investigating the 
effect of convexity: due to space constraints, this contribution focuses 
on the effect of convexity on technical efficiency.

The main topic of this research is to investigate to which extent 
these seemingly substantial differences between technical efficiencies 
on convex (C) and nonconvex (NC) technologies translate into different 
peers and learning possibilities. We start out with the conjecture that 
the traditional radial efficiency measure may behave quite different 
from its nonradial alternatives. While the radial efficiency measure 
projects onto the isoquant of technology, the historically first nonradial 
alternative proposed in the literature, i.e., the Färe and Lovell (1978) ef-
ficiency measure, projects onto the efficient subset. To our knowledge, 
it has never been investigated to which extent radial and nonradial 
efficiency measures lead to different learning experiences. Learning is 
critical for frontier applications in management and policy.

To guide our empirical research, we develop three working hy-
potheses regarding to how the analysis of peers in frontier technologies 
facilitates learning by comparing C versus NC basic technologies on 
the one hand, and radial versus nonradial efficiency measures on 
the other hand. The first working hypothesis states that learning is 
easier when the number of peers involved is low. The second working 
hypothesis reads that learning is easier when peer similarity over model 
variations is high. The final working hypothesis is that learning is easier 
when more peers dominate the evaluated observation. To empirically 
investigate these three working hypotheses we develop three metrics 
that can quantify the empirical impacts. We start our empirical analysis 
by selecting five existing secondary data sets with a variety of specifi-
cations and sample sizes. We supplement these existing data sets with 
a very large sample of more than 10 000 observations on Belgian traffic 
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control centres: we create subsamples from very small to very big. We 
try to verify our three working hypotheses on these secondary data sets 
as well on this original data set using these three metrics. This is a 
managerial argument questioning convexity.

This contribution is structured as follows. Section 2 defines the 
production technologies as well as the radial and nonradial efficiency 
measures employed in our empirical analysis. Section 3 provides a 
framework for the analysis of peers. It focuses mainly on the formu-
lation of the three distinct working hypotheses that we want to be put 
to a test using three separate metrics. Section 4 discusses the selection 
of data sets: existing secondary data sets, and a new large data set. 
Section 5 focuses on the details of the empirical results. The final 
Section 6 concludes.

2. Technologies and efficiency measures: Basic definitions

This section introduces some basic notation and defines the pro-
duction technologies utilized in this contribution. We start from a 
given production process that turns an 𝑁-dimensional input vector 
𝑥 ∈ R𝑁

+  into an 𝑀-dimensional output vector 𝑦 ∈ R𝑀
+ . The production 

possibility set or production technology 𝑇  is defined as 𝑇 = {(𝑥, 𝑦) ∣
𝑥 can produce at least y}. Associated with this technology 𝑇 , the input 
set 𝐿(𝑦) = {𝑥 ∣ (𝑥, 𝑦) ∈ 𝑇 } denotes all input vectors 𝑥 capable of 
producing at least a given output vector 𝑦.2

In this contribution, the technology 𝑇  is assumed to satisfy a com-
bination of the following standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ 𝑇  and if 
(0, 𝑦) ∈ 𝑇 , then 𝑦 = 0.

(T.2) 𝑇  is a closed subset of R𝑁
+ × R𝑀

+ .
(T.3) Strong input and output disposability, i.e., if (𝑥, 𝑦) ∈ 𝑇  and 

(𝑥′, 𝑦′) ∈ R𝑁
+ × R𝑀

+ , then (𝑥′,−𝑦′) ≥ (𝑥,−𝑦) ⇒ (𝑥′, 𝑦′) ∈ 𝑇 .
(T.4) 𝑇  is convex.

We comment briefly on these traditional assumptions by recalling 
the following elements (see, e.g., Färe et al. (1994) or Hackman (2008) 
for details). Inaction is feasible, and there is no free lunch. Technology 
is closed. We assume strong or free disposability of inputs and outputs: 
inputs can be wasted, and outputs can be discarded without any op-
portunity costs. Finally, technology is C. In our empirical analysis not 
all these axioms are maintained simultaneously.3 In particular, C is not 
always maintained in the empirical analysis.

When discussing input-oriented efficiency measures, in our context 
it is important to distinguish between two subsets of the input set. First, 
we can define the isoquant of an input set as: 
𝐼𝑠𝑜𝑞𝐿(𝑦) = {𝑥 ∈ 𝐿(𝑦) ∣ ∀𝜆 ∈ [0, 1) ∶ 𝜆𝑥 ∉ 𝐿(𝑦)}. (1)

Finally, the strongly efficient subset of the input set is defined as: 

𝐸𝑓𝑓𝐿(𝑦) = {𝑥 ∈ 𝐿(𝑦) ∣ ∀𝑢 ∈ R𝑁
+ ∶ 𝑢 ≤ 𝑥 and 𝑢 ≠ 𝑥 ⇒ 𝑢 ∉ 𝐿(𝑦)}. (2)

Obviously, these two subsets of the input set are embedded: 𝐸𝑓𝑓𝐿(𝑦) ⊆
𝐼𝑠𝑜𝑞𝐿(𝑦) ⊆ 𝐿(𝑦).

The radial input efficiency measure characterizes the input set 𝐿(𝑦)
completely. The formal definition of the Debreu (1951) and Farrell 

2 It is common to assume that the input and output data satisfy a series of 
conditions (see, e.g., Färe et al. (1994, p. 44–45)): (i) each producer employs 
non-negative amounts of each input to produce non-negative amounts of each 
output; (ii) there is an aggregate production of positive amounts of every 
output as well as an aggregate utilization of positive amounts of every input; 
and (iii) each producer employs a positive amount of at least one input to 
produce a positive amount of at least one output.

3 For example, note that the C variable returns to scale technology need 
not satisfy inaction.
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(1957) radial input-oriented efficiency measure is as follows:
𝐷𝐹 ∶ R𝑁

+ × R𝑀
+ → R+ ∪ {+∞} ∶ (𝑥, 𝑦) ↦

𝐷𝐹 (𝑥, 𝑦) = inf
𝛿∈R+

{𝛿 ∣ 𝛿𝑥 ∈ 𝐿(𝑦)}. (3)

This radial input efficiency measure indicates the maximal equipropor-
tionate reduction in all inputs which still allows production of the given 
output vector. This radial input efficiency measure has the main prop-
erty that it is smaller than or equal to unity for all feasible input–output 
combinations (∀𝑥 ∈ 𝐿(𝑦) ∶ 𝐷𝐹 (𝑥, 𝑦) ≤ 1), with efficient production 
on the isoquant of 𝐿(𝑦) represented by unity. Furthermore, the radial 
input efficiency measure has a cost interpretation (see, e.g., Hackman 
(2008)).

The nonradial Färe and Lovell (1978) input efficiency measure can 
be defined as follows:
𝐹𝐿 ∶ R𝑁

+ ⧵ {0} × R𝑀
+ → R+ ∪ {+∞} ∶ (𝑥, 𝑦) ↦

𝐹𝐿(𝑥, 𝑦) = inf
𝛽∈R𝑁

+

{ 1
𝑛(𝐼(𝑥))

∑

𝑖∈𝐼(𝑥)
𝛽𝑖
|

|

|

𝛽 ⊙ 𝑥 ∈ 𝐿(𝑦), 𝛽𝑖 ∈ [0, 1]
}

, (4)

where ⊙ denotes the Hadamard (element by element) product of two 
vectors, and for all 𝑥 ∈ R𝑁

+  the support of 𝑥 is defined as 𝐼(𝑥) =
{𝑖 ∈ {1,… , 𝑁} ∣ 𝑥𝑖 > 0} and 𝑛(𝐼(𝑥)) denotes the cardinality of the 
set 𝐼(𝑥). This Färe and Lovell (1978) input efficiency measure indicates 
the minimum average sum of dimension-wise reductions in each input 
dimension which maintains production of given outputs on the efficient 
subset of the input set.4

In our static production context the above input efficiency mea-
sures are always well-defined. More details on the axiomatic properties 
of both input-oriented efficiency measures is found in Russell and 
Schworm (2009). It suffices to point out that the radial input efficiency 
measure does not comply with the indication property of the efficient 
subset, while the Färe and Lovell (1978) input efficiency measure does. 
Both input efficiency measures comply with another and perhaps more 
fundamental property of independence of units of measurement (for 
generalized commensurability: see Briec, Dumas, et al. (2022)).

It can be noted that we have limited the discussion to some of the 
most popular input-oriented efficiency measures, but it is also possible 
to define more general graph efficiency measures that operate in the 
full space of inputs and outputs (see Russell and Schworm (2011) for a 
survey). One example is the directional distance function, a generalized 
efficiency measure that is compatible with reductions in inputs and 
expansions in outputs and that has a normalized profit interpretation.

For the empirical application in Section 4, we assume a nonpara-
metric frontier technology under the flexible or variable returns to scale 
assumption (VRS) and impose either C or NC.5 Based on 𝐾 observations 
consisting of input–output combinations (𝑥𝑘, 𝑦𝑘) ∈ R𝑁

+ × R𝑀
+ , (𝑘 =

1,… , 𝐾), a unified algebraic representation of C and NC nonparametric 
frontier estimators of the technologies under the flexible or variable 
returns to scale assumption is possible as follows: 

𝑇𝛬,𝑉 𝑅𝑆 =

{

(𝑥, 𝑦) ∣ 𝑥 ≥
𝐾
∑

𝑘=1
𝑧𝑘𝑥𝑘, 𝑦 ≤

𝐾
∑

𝑘=1
𝑧𝑘𝑦𝑘, 𝑧 ∈ 𝛬

}

, (5)

where

(i) 𝛬 ≡ 𝛬C =

{

𝑧 ∣
𝐾
∑

𝑘=1
𝑧𝑘 = 1 and 𝑧𝑘 ≥ 0

}

;

(ii) 𝛬 ≡ 𝛬NC =

{

𝑧 ∣
𝐾
∑

𝑘=1
𝑧𝑘 = 1 and 𝑧𝑘 ∈ {0, 1}

}

.

4 Ruggiero and Bretschneider (1998) and Zhu (1996), for instance, define 
a weighted Färe and Lovell (1978) input efficiency measure.

5 It cannot be excluded that the distinction between isoquant and efficient 
subset may also be relevant for parametric frontier analysis. We focus on 
nonparametric frontier technologies where this distinction has been the subject 
of substantial research as cited in this contribution.
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The activity vector 𝑧 of real numbers summing to unity represents 
the C axiom. This same sum constraint with each vector component 
being a binary integer represents NC. The estimator of the C technology 
satisfies axioms (T.1) (except inaction) to (T.4), while the estimator of 
the NC technology adheres to axioms (T.1) to (T.3).

It is now straightforward to consider the input efficiency estimates, 
obtained by plugging the nonparametric frontier estimators of the 
technologies determined by (5) into the input efficiency measures (3) 
and (4). Both input efficiency estimates of (3) and (4) involve solving 
a simple linear program (e.g., Ferrier et al. (1994, Appendix A)) in the 
C case, and an implicit enumeration algorithms (e.g., Briec, Kerstens, 
and Van de Woestyne (2022)) in the NC case: see also Appendix B 
for further details. Let 𝑧∗𝑘 denote the optimal solution for the activity 
vector components from these mathematical programming problems, 
then the reference unit is a weighted average of the existing units 
(
∑𝐾

𝑘=1 𝑧
∗
𝑘𝑥𝑘,

∑𝐾
𝑘=1 𝑧

∗
𝑘𝑦𝑘) under C, and it is (𝑥𝑘, 𝑦𝑘) corresponding to the 

sole non-zero optimal activity component 𝑧∗𝑘 = 1 under NC.

3. Managerial framework for the analysis of peers

3.1. Literature review: A selection on peers and learning

Radial and nonradial efficiency measures have been compared to 
one another, but rarely on C and NC technologies simultaneously. 
Silva Portela et al. (2003) is such a study, but the authors use non-
oriented efficiency measures that modify inputs and outputs simulta-
neously, and do not analyse the underlying peers. Ferrier et al. (1994) 
and De Borger et al. (1998) analyse input-oriented radial and nonradial 
(including the Färe and Lovell (1978)) efficiency measures on the same 
banking data set using C and NC technologies, respectively, but these 
articles do not compare C and NC results and ignore the analysis of the 
underlying peers. Thus, it seems that our empirical analysis is the first 
to compare input-oriented radial and Färe and Lovell (1978) efficiency 
measures on C and NC technologies and assess their underlying peers.

Månsson (2003) is the first to mitigate the impact of C on the 
selection of peers by suggesting to compute a sphere with minimal 
Euclidean distance between an evaluated observation and the set of 
efficient observations in the sample. This method is disconnected of the 
use of traditional efficiency measures, and the author does not further 
analyse the resulting peers using C and NC technologies and using 
radial and nonradial efficiency measures. Chavas and Kim (2015) are 
the first to create a technology that combines in a sense endogenously 
both the C and the NC technologies by defining a mixture technology 
relative to a neighbourhood of firms within a given distance of one 
another. But, these authors ignore the analysis of the underlying peers 
as well.

Ruiz and Sirvent (2022a) develop some C benchmarking models 
that seek to find the closest targets (projections onto the production 
frontier), while at the same time identifying reference sets consisting of 
peers (optimal activity variables) having the most similar performances 
to that of the unit under evaluation. Ruiz and Sirvent (2022b) propose 
further C benchmarking models that identify peers serving as bench-
marks showing the way to achieve the targets that have been set. Thus, 
targets and peers set the same direction for improvement determined 
by the targets, while the peers identified are real benchmarks showing 
the way towards those targets.

Krüger (2018) restricts the identification of peers to the efficient 
subset of a basic NC technology. In particular, he identifies the strongly 
efficient subset of a NC technology and then computes optimal dis-
tances towards these points using a minimal or maximal directional 
distance function. In line with some earlier work, Ghahraman and 
Prior (2016) draw on social network analysis to transform the bench-
marking information from C efficiency analysis into a network of 
possible efficiency improvements. These authors calculate optimal step-
wise benchmarking paths, detect possible outliers, cluster units, and 
highlight specialized decision making units. Daraio and Simar (2016) 
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propose a data-driven approach based on nonparametric local constant 
regression to objectively select a direction vector for the directional 
distance function. A problem of eventually abandoning a proportional 
version of the direction vector is that generalized commensurability is 
no longer respected (see Briec, Dumas, et al. (2022)). 

But, in all these contributions these peers are not further analysed in 
terms of similarity between C and NC technologies and between radial 
and nonradial efficiency measures.

3.2. Managerial concerns

Decision makers seem to have difficulties understanding the effi-
ciency results under C. This is evidenced in remarks, scattered in the 
literature, on the problems encountered in communicating the results 
of traditional efficiency measurement assuming C to decision makers. 
We provide some examples of quotes reflecting this doubt of managers 
on the axiom of C.

In a study applying C nonparametric frontier methods to measure 
bank branch efficiency, Parkan (1987, p. 242) notes:

The comparison of a branch which was declared relatively efficient, 
to a hypothetical composite branch, did not allow for convincing 
practical arguments as to where the inefficiencies lay.

Epstein and Henderson (1989, p. 105) report similar experiences in that 
managers simply question the feasibility of the hypothetical projection 
points resulting from C nonparametric frontiers when discussing an 
application to a large public-sector organization:

The algorithm for construction of the frontier was also discussed. 
The frontier segment connecting A and B was considered unattain-
able. It was suggested that either (1) these two DMUs (Decision 
Making Units, red.) should be viewed as abnormal and dropped 
from the model, (2) certain key variables have been excluded, or (3) 
the assumption of linearity was inappropriate in this organization. 
It appears that each of these factors was present to some degree.

In a very similar vein, Bouhnik et al. (2001, p. 243) state:
Equally as important, it is our experience that managers often 
question the meaning of C combinations that involve what they 
perceive to be irrelevant DMUs.

These quotes point to the fact that C may well in practice combine 
observations that are too far apart in terms of input mix, output mix, 
and/or scale of operations. While one hopes for a rather uniformly 
dense rather well-spaced cloud of points that avoids the combination 
of extreme points of production, such extreme combinations apparently 
occur and are puzzling for managers.

In addition, some researchers admit that NC analysis of production 
facilitates the practical use of efficiency results. For instance, Bogetoft 
et al. (2000, p. 859) declare in this context:

In general, allowing the possibility set to be nonconvex facilitates 
the practical use of productivity analysis in benchmarking. In par-
ticular, fictitious production possibilities, generated as convex com-
binations of those actually observed, are usually less convincing as 
benchmarks, or reference units, than actually observed production 
possibilities.

This experience is confirmed by Halme et al. (2014, p. 10):

During our long experience of DEA applications we repeatedly en-
countered the phenomenon that DMs (Decision Maker) are reluctant 
to evaluate other than existing units.

While these quotes can be interpreted as questioning the practical 
usefulness of C, we are in favour of a more benign interpretation. These 
quotes reveal that managers have difficulties learning from peers when 
these do not dominate the DMU being evaluated, while they are capable 
to learn from peers when these do dominate the DMU being evaluated.
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3.3. Comparison framework

Our empirical learning from peers analysis is based on the following 
three working hypotheses:

1 𝑊𝐻1: Learning is facilitated when peer count is low.
2 𝑊𝐻2: Learning is facilitated when peer similarity over model 
variations is high.

3 𝑊𝐻3: Learning is facilitated when peer dominance is high.

It is important to highlight that these three working hypotheses are 
not directly subjected to statistical tests. Instead, these working hy-
potheses serve as a preliminary framework (expectation) that provides 
a starting point for further research. The working hypothesis is often 
associated with deductive and exploratory research goals within empir-
ical investigations, frequently serving as a foundational framework in 
qualitative and quantitative research endeavors (see, e.g., Casula et al. 
(2021)). 

The first working hypothesis 𝑊𝐻1 indicates that learning is sim-
plest when the number of peers is low. Imagining that an inefficient 
observation learns via either visiting their peers or via some meetings 
regrouping their peers, it is intuitively clear that the time cost and 
complexity of such learning process is simplest when the number of 
peers is low. For instance, Krüger (2018) in fact restricts peers for a C 
technology to be selected among the unique units in the NC efficient 
subset: just as in the NC technology, this always leads to a single peer. 
This can be interpreted as an attempt to keep the number of peers low 
to facilitate learning.

The second working hypothesis 𝑊𝐻2 hopes for some robustness of 
the peers across model variations. The more peers are similar across 
model variations the easier it is to learn from peers and to implement 
changes that hopefully ameliorate performance. This idea is somewhat 
similar to articles investigating peer similarity across different effi-
ciency measures (e.g., De Borger et al. (1998), Ferrier et al. (1994) 
or Silva Portela et al. (2003)).

Finally, the third working hypothesis 𝑊𝐻3 distinguishes between 
peers that are dominating the evaluated observation and those that 
do not dominate the evaluated observation: it is simply stated that 
learning is easier when the relative amount of peers dominating the 
evaluated observation is high. The above quotes in Section 3.2 seem to 
support this hypothesis. Indeed, a benign interpretation is that these 
quotes do not as such question C, but reveal that managers have 
difficulties learning from peers when these do not dominate the DMU 
being evaluated, while they are capable to learn from peers when these 
do dominate the DMU being evaluated. Månsson (2003) uses vector 
dominance to assess peers in a C frontier model, but does not formulate 
any hypothesis as to its impact on learning.

To systematically and coherently analyse how learning from radial 
and nonradial measures and learning from C and NC technologies can 
differ, we operationalize our hypotheses through the comparison frame-
work depicted in Fig.  1. We perform four calculations of efficiencies 
and efficient peers, which combine the radial/nonradial and C/NC 
approaches: Convex-Radial (denoted as C&DF and A⃝  throughout this 
paper), Convex-Nonradial (C&FL and B⃝), Nonconvex-Radial (NC&DF 
and C⃝), and Nonconvex-Nonradial (NC&FL and D⃝). We examine the 
impact of radial versus nonradial measures in comparisons 1  and 2 , 
and the impact of C versus NC in comparisons 3  and 4 .

To evaluate our hypothesis 𝑊𝐻1, we simply perform a peer count. 
For each observation 𝑗0 ∈ {1,… , 𝐾} under evaluation, the set of effi-
cient peer units is defined as 𝐸𝑃 𝑇&𝐸 (𝑗0) = {𝑘 ∈ {1,… , 𝐾} ∣ 𝑧𝑘,𝑗0 > 0}, 
with 𝑧𝑘,𝑗0  representing the activity (intensity) variables for observation 
𝑗0, determined assuming technology 𝑇  and applying efficiency measure 
𝐸. The peer count for observation 𝑗0 is then the number of elements (or 
cardinal) in the set of peers, or 𝑛(𝐸𝑃 𝑇&𝐸 (𝑗0)). The cardinality of this set 
𝑛(𝐸𝑃 𝑇&𝐸 (𝑗0)) is at least unity under C and normally unity under NC. 
This set of efficient peer units must be distinguished from the reference 
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Fig. 1. Comparison framework.
unit defined at the end of Section 2. We develop a numerical example 
of the peer count based on one of our data sets in Appendix C.

Peers have certainly been analysed in the Data Envelopment Anal-
ysis (DEA) literature, but to our knowledge little is known about 
the amount of peers under radial efficiency measures projecting on 
the isoquant versus nonradial efficiency measures projecting on the 
efficient subset. Also, while counting may seem trivial for FDH (there is 
always one peer), we explore systematically the potential non-unique 
optimal solutions of the underlying implicit enumeration problems 
(see Appendix B). Indeed, it is not excluded that multiple dominating 
observations with an identical efficiency measure can be identified. 
This search for alternative optima under NC has to the best of our 
knowledge never been reported before.

We apply two similarity metrics to support the analysis of our 
hypotheses 𝑊𝐻2 and 𝑊𝐻3. To examine peer similarity we apply the 
Jaccard Similarity Index to quantify the overlap between the efficient 
peers identified by two different approaches. The Jaccard Index or 
Jaccard Similarity Index (JSI) is an intuitively simple yet powerful 
similarity metric, commonly used in domains such as biostatistics, fraud 
detection, and image recognition to assess the overlap between two 
sample sets. It is calculated by dividing the number of common peers 
(i.e., peers identified by the two approaches) by the total number 
of peers (i.e., peers identified by at least one approach). As such, it 
gauges the amount of overlap between two sets of efficient peers. More 
formally, the Jaccard Similarity Index for observation 𝑗0, comparing 
approach with technology 1 and efficiency measure 1 (𝑇1&𝐸1) with 
approach with technology 2 and efficiency measure 2 (𝑇2&𝐸2) in terms 
of peer similarity, is expressed as: 

𝐽𝑆𝐼(𝑗0) = 100 ⋅
𝑛(𝐸𝑃 𝑇1&𝐸1 (𝑗0) ∩ 𝐸𝑃 𝑇2&𝐸2 (𝑗0))
𝑛(𝐸𝑃 𝑇1&𝐸1 (𝑗0) ∪ 𝐸𝑃 𝑇2&𝐸2 (𝑗0))

(6)

where in the numerator we have the intersection of the cardinality of 
the peer set 𝑛(𝐸𝑃 𝑇1&𝐸1 (𝑗0)) with technology 1 and efficiency measure 
1 and the cardinality of the peer set 𝑛(𝐸𝑃 𝑇2&𝐸2 (𝑗0)) with technology 2 
and efficiency measure 2, and in the denominator we have their union. 
Obviously, the JSI is not the only resemblance measure available in the 
literature (see, e.g., Batagelj and Bren (1995) for an early review), but 
it is among the oldest and most well-known such indices. A numerical 
example of the JSI index based on one of our data sets is found in 
Appendix C. 
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Finally, for the C-NC comparison we complement the JSI with an 
additional, purpose-built similarity metric that focuses on peer domi-
nance: the Peer Dominance Index (PDI). We define the Peer Dominance 
Index as the number of vector-dominating C DEA peers, divided by 
the number of C DEA peers. It is only calculated for non-efficient 
observations, or in other words for observations with learning potential. 
More formally, with technology 𝑇  being C, the Peer Dominance Index 
for observation 𝑗0 is defined as: 

𝑃𝐷𝐼(𝑗0) = 100 ⋅
𝑛({𝑝 ∈ 𝐸𝑃𝐶&𝐸 (𝑗0) ∣ 𝑥𝑝 ≤ 𝑥𝑗0 , 𝑦𝑝 ≥ 𝑦𝑗0})

𝑛(𝐸𝑃𝐶&𝐸 (𝑗0))
(7)

with (𝑥𝑗0 , 𝑦𝑗0 ) ∈ R𝑁
+ ×R𝑀

+  representing the input–output combination for 
observation 𝑗0, and (𝑥𝑝, 𝑦𝑝) ∈ R𝑁

+ × R𝑀
+  the input–output combinations 

for its peers. In the numerator, the subset of 𝐸𝑃𝐶&𝐸 (𝑗0) contains the 
peers that vector-dominate the evaluated observation 𝑗0 in the C tech-
nology with efficiency measure 𝐸: they produce at least as much of each 
output, with no more of any input.6 The denominator 𝑛(𝐸𝑃𝐶&𝐸 (𝑗0))
denotes simply the cardinality of the peer set in the C technology with 
efficiency measure 𝐸. For a numerical example of the PDI index based 
on one of our data sets, one can consult Appendix C. 

The PDI conceptually broadens the JSI perspective and provides 
additional information for the C-NC comparison. Although the PDI does 
not explicitly compare DEA with FDH approaches, it does consider the 
(NC) dominance aspect of the peers identified by DEA, and therefore 
we position it in Fig.  1 next to the DEA-FDH comparison. Both the 
JSI and the PDI vary between 0 and 100 (percent), with higher values 
indicating a higher similarity.

We expect these three metrics to vary depending on the approach 
(Convex vs Non-Convex, Radial vs Nonradial). However, before ap-
plying real datasets and conducting statistical tests, the full scope of 
differences and similarities between these approaches remains unclear. 
Our study provides an exploratory analysis of learning from peers by 
thoroughly examining these three metrics across different approaches. 

4. Selection of data sets

We perform our empirical analysis on both five existing (published) 
data sets and one new (unpublished) data set. Ordered according to 

6 The vector inequality convention is as follows: 𝑎 ≤ 𝑏 if and only if 𝑎𝑖 ≤ 𝑏𝑖
for all i.



K. Kerstens et al. European Journal of Operational Research 329 (2026) 1052–1062 
Table 1
Sources of empirical data.
 Article Size (𝐾) # Inp. (𝑁) # Outp. (𝑀) Sector Remarks  
 Färe et al. (1985) 32 3 1 Electricity  
 Haag et al. (1992) 41 4 2 Agriculture  
 Färe et al. (1983) 86 3 1 Electricity Unbalanced (N=20 & T=5) 
 Cesaroni et al. (2011) 92 2 5 Car registration  
 Fan et al. (1996) 471 3 1 Agriculture  
 Traffic control centre (TCC) 10 198 2 3 Railways  
Table 2
Input and output variables for the traffic control centre (TCC) Models.

Inputs

 OPER Number operators present during this specific hour  
 SURV Numbers surveillance staff present during this specific hour  

Outputs

 MOVE Number of train movements  
 ADAPT Traffic interventions by TCC staff (weighted by time needed) 
 SAFETY Safety interventions by TCC staff (weighted by time needed)  

ascending sample size, Table  1 presents key features of the six data 
sets employed in this study. This same ordering is maintained in other 
tables.

We first briefly discuss the five existing studies (earlier used in Cesa-
roni et al. (2017)). One article contains a small unbalanced panel (Färe 
et al. (1983)) and four articles use cross section data: Cesaroni (2011), 
Fan et al. (1996), Färe et al. (1985), and Haag et al. (1992). Key points 
to note are the following: (i) there are three single output articles, and 
two multiple-output articles; and (ii) the sample sizes vary from quite 
small to rather big. Finally, note that the time dimension in the panel 
data set is ignored: this assumes the absence of technical change over 
the five time periods.

The new empirical data are obtained from Belgium’s national rail-
way infrastructure operator Infrabel. In particular, data is gathered 
from Infrabel’s staff scheduling tool and the real-time signalling and 
safety systems. The resulting large-scale data set captures the resources 
and activities of 11 Belgian traffic control centres (TCC), for each indi-
vidual hour of the first 6 months of 2016. We first generated a random 
subsample of 11 772 DMUs, and then eliminated the observations that 
simultaneously exhibit zero outputs in all dimensions. The final dataset 
contains 10 198 DMUs.

Notice that from a statistical perspective the first four data sets 
displayed in Table  1 are very small given the slow convergence rates 
of C and NC technical efficiency estimators, which are 𝐾−2∕(𝑁+𝑀+1)

and 𝐾−1∕(𝑁+𝑀), respectively: see Kneip et al. (2015) for more details. 
Therefore, one should take care when interpreting the results of these 
smallest data sets. 

The model specification is the same as in Roets et al. (2018) and 
is displayed in Table  2. The input-oriented calculations are based on 
two inputs, capturing the number of operators (OPER) and the number 
of surveillance staff (SURV) present in the TCC during the hour in 
question. The three outputs gauge the activity in the TCC during this 
hour. The output MOVE quantifies the traffic volumes and therefore the 
traffic monitoring effort by the TCC, the second output ADAPT captures 
the non-safety critical interventions by the TCC staff (e.g., modifying 
train priorities or train itineraries), and the final output SAFETY mea-
sures the amount of safety critical interventions (e.g., protecting track 
workers in case of maintenance works). For more details on the model 
specifications we refer to Roets et al. (2018). For additional insights 
into the railway traffic control process we refer to Topcu et al. (2019).

The use of this TCC data set provides three particular advantages 
for our empirical analysis. First, the data is used intra-company to 
support decision-making, and given its real-world nature it is therefore 
particularly relevant for our research on ‘‘learning from peers’’. Second, 
its high level of temporal disaggregation produces inputs of a discrete 
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Table 3
Average efficiencies.
Data set K C&DF C&FL NC&DF NC&FL

A⃝ B⃝ C⃝ D⃝

Färe et al. (1985) 32 0.951 0.824 0.998 0.982
Haag et al. (1992) 41 0.880 0.715 1.000 1.000
Färe et al (1983) 86 0.929 0.831 0.986 0.952
Cesaroni et al. (2011) 92 0.729 0.645 0.911 0.858
Fan et al. (1996) 471 0.811 0.752 0.913 0.823

Average 0.860 0.753 0.962 0.923

TCC subsample 8 40 0.780 0.736 0.901 0.836
TCC subsample 7 80 0.779 0.738 0.909 0.835
TCC subsample 6 160 0.738 0.675 0.907 0.826
TCC subsample 5 319 0.745 0.680 0.885 0.801
TCC subsample 4 638 0.648 0.629 0.875 0.778
TCC subsample 3 1275 0.612 0.597 0.844 0.736
TCC subsample 2 2550 0.573 0.538 0.834 0.721
TCC subsample 1 5099 0.555 0.516 0.810 0.699
TCC full sample 10198 0.528 0.493 0.765 0.650

Average 0.662 0.622 0.859 0.765

nature (OPER and SURV), which should allow to identify multiple peers 
even under NC. Third, its large scale allows to specifically examine the 
impact of sample size. Starting from the original large-scale TCC data 
set, we sequentially generate random subsets, consecutively consisting 
of half the sample of the previous data set. In doing so, we generate 
eight subsets of data, containing 5099, 2550, 1275, 638, 319, 160, 80 
and 40 DMUs, respectively. Note that the lower end of this range of 
sample sizes overlaps with the sample size range of the five existing 
publicly available data sets under investigation.

5. Empirical results

5.1. Efficiency distributions

Before reporting and analysing the metrics related to our three 
learning from peers working hypotheses (operationalized by the num-
ber of peers, the Jaccard Similarity Index, and the Peer Dominance 
Index), we take a closer look at the similarities and dissimilarities be-
tween the four different efficiency results. Table  3 displays the average 
efficiency scores for the five public data sets and the nine TCC data sets, 
as well as the average of these averages. The last four column headers 
of this table correspond with the labels used in Fig.  1. We can draw the 
following conclusions. First, for both the public and the TCC data sets, 
the radial efficiency scores (DF) are higher than the nonradial scores 
(FL), and the NC scores exhibit a higher efficiency than the C scores. 
Second, as expected, efficiency levels have a tendency to decrease as 
sample size 𝐾 increases. Third, for one small data set (in Haag et al. 
(1992)), there are no NC-inefficient units reported. Such a situation 
is sometimes interpreted as a lack of discriminatory power of the NC 
technology. But, another way to look at the matter is to realize that 
the 12% to 28.5% inefficiencies found under the C technology depend 
entirely on the validity of the C hypothesis (see our discussion supra).

For a formal assessment of this difference in empirical densities, we 
employ a nonparametric test initially proposed by Li (1996). This test 
has been refined by Fan and Ullah (1999) and others: the most recent 
development is by Li et al. (2009). This nonparametric test analyses 
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the differences between entire distributions instead of focusing on, for 
instance, first moments (as, e.g., the Wilcoxon signed-ranks test). It 
tests the statistical significance of differences between two kernel-based 
estimates of density functions, 𝑓 and 𝑔, of a random variable 𝑥. The null 
hypothesis states the equality of both density functions almost every-
where (𝐻0 ∶ 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥). The alternative hypothesis negates 
the equality of both density functions (𝐻1 ∶ 𝑓 (𝑥) ≠ 𝑔(𝑥) for some 𝑥). 
This test is valid for both dependent and independent variables: observe 
that dependency is a characteristic of frontier estimators (i.e., efficiency 
levels depend on sample size, among others).

To avoid the issue of spurious mass at the boundary of the tech-
nical efficiency measures, Simar and Zelenyuk (2006) offer a further 
refinement of this Li-test statistic for nonparametric frontier estimators. 
Their Algorithm II adds uniform noise with one order of magnitude less 
than the noise added by the specific estimator to smooth the boundary 
estimates, while their Algorithm I ignores the boundary estimates. Their 
Monte Carlo simulations suggest that algorithm II performs somewhat 
better overall, even if the strength of the test statistic decreases with 
increasing dimension in the production specification. In summary, we 
employ the Li et al. (2009) version of this test, which has been adjusted 
by the application of Simar and Zelenyuk (2006) Algorithm II.7

The results of the Li test adjusted by Simar and Zelenyuk (2006) 
are displayed in Table  4 (with the p-values and significance levels 
in brackets underneath). The last four column headers of the table 
correspond with the labels used in Fig.  1. We first consider the radial 
versus nonradial comparison (see C&DF versus C&FL in column 1 , and 
NC&DF versus NC&FL in column 2 ). Afterwards, we examine the C 
versus NC differences.

For the public datasets, all indicate significantly different distribu-
tions for radial versus nonradial measures, except for the NC efficien-
cies (column 2 ) in the Haag et al. (1992) data set. This result is 
confirmed by the TCC data sets: both for the C and NC efficiencies, the 
distributions become significantly different at sample sizes comparable 
to the pattern exhibited by the public data sets, except for the C effi-
ciencies (column 1 ) in TCC subsample 8. The C versus NC comparison 
(C&DF versus NC&DF in column 3 , and C&FL versus NC&FL in column 
4 ) paints a different picture. Almost all efficiency distributions are 
significantly different, except for a few small TCC subsamples. The null 
hypothesis of equal efficiency distributions for C&DF versus NC&DF 
cannot be rejected in TCC subsamples 5, 6, and 8. The null hypothesis of 
equal efficiency distributions for C&FL versus NC&FL cannot be rejected 
in TCC subsamples 7 and 8. 

Taken together, our empirical results quantify and test the impact 
of radial versus nonradial efficiency measures, and C versus NC tech-
nologies on the efficiency distributions. The reported divergences in 
efficiency are: (i) more pronounced for the radial versus nonradial ef-
ficiency comparison compared to the C versus NC efficiency measures, 
and (ii) highly dependent on sample size mainly for the C versus NC 
efficiency measures. 

In Table  5 we report the specific test for C developed by Kneip 
et al. (2016) and augmented by Simar and Wilson (2020) for the 
production technology. The null hypothesis is that the technology is C. 
The alternative hypothesis is that the technology is NC. In fact, there 
are two tests, denoted as KSW#1 and KSW#2.8 KSW#1 computes the 
average of the Kneip et al. (2016) test statistic across several sample 
splits. KSW#2 conducts a Kolmogorov–Smirnov test to evaluate the 

7 Note that the added uniform noise depends on the convergence rates, 
which are 𝐾−2∕(𝑁+𝑀+1) and 𝐾−1∕(𝑁+𝑀) for C and NC estimators, respectively: 
see Kneip et al. (2015) for more details. Moreover, we use the npdeneqtest
command from np package in R. This R-code is available upon simple request.

8 These tests are computed using the FEAR package in R that is avail-
able on the web site: https://pww.people.clemson.edu/Software/FEAR/fear.
html. Moreover, in the test.convexity command we set the following 
parameters: NSPLIT=20, NREP=1000, and NBCR=100.
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uniformity of the distribution of 𝑝-values across multiple sample splits. 
Both tests generally obtain similar results, except for Fan et al. (1996), 
and TCC subsamples 3, 6 and 8, in which only one test rejects C. All in 
all, Table  5 shows that we can always find evidence against C, except 
for Cesaroni et al. (2011), and TCC subsamples 5 and 7. This result is 
consistent with the result in Table  4, where we find that the C versus 
NC efficiency distributions are significantly different, except for a few 
small samples. Combining these results, it is clear that for most samples 
the production technology is NC. 

5.2. Number of peers (working hypothesis 𝑊𝐻1)

Turning to the focus of our research, the learning from peers per-
spective, we now examine how the radial versus nonradial and the C 
versus NC modelling decisions influence the number of peers. Table 
6 displays the average number of DMU peers for the four different 
combinations. Again, the last four columns headers correspond with 
the labels used in Fig.  1.

For the public data sets, we can infer the following conclusions. 
First, as expected, the number of peers is higher for the C than for the 
NC efficiency measures. The grand averages are 2.84 and 2.12 on the 
one hand, and 1.02 and 1.00 on the other hand, respectively. Second, 
the number of peers is higher for the radial than for the nonradial 
approaches. Grand averages amount to 2.84 versus 2.12 for the C 
case, and 1.02 versus 1.00 for the NC case, respectively. Third, the 
number of NC peers is consistently equal to one 1, with the exception 
of the NC&DF results for the Färe et al. (1983) and the Cesaroni et al. 
(2011) data sets. Indeed, our code explicitly considers all NC peers: 
there is always the possibility of multiple optimal solutions in that 
several dominating observations obtain an identical efficiency measure. 
In particular, for the latter two data sets we identify an average number 
of peers of 1.06 (4 DMUs having 2 peers) respectively 1.04 (5 DMUs 
having 2 peers).

These patterns observed in the public data sets are somewhat con-
firmed by the TCC data sets. First, the number of peers is higher for 
the C than for the NC efficiency measures for the smallest samples, 
but the reverse is true for the largest samples. Indeed, the NC results 
reveal a remarkable increase in average number of peers for the radial 
approach: with an average number of 15.40, it clearly and rapidly 
increases with sample size, and climbs from an average of 1.43 (𝐾 = 40, 
smallest subsample) to 41.99 (𝐾 = 10 198, the highest subsample size). 
This is partially due to the discrete nature of the input variables for 
the TCC model (number of hours of operators and surveillance staff), 
but also confirms and at the same time magnifies the slumbering and 
slightly emerging effect found in the public data sets. The NC&FL results 
display a much more moderate but still pertinent increase in number 
of peers, and with an average of 3.76 it is comparable to (and very 
slightly exceeds) the C&DF and C&FL results. Second, the number of 
peers is again higher for the radial than for the nonradial approaches.

In conclusion, radial efficiency measures have on average more 
peers than nonradial efficiency measures on C but especially so on 
NC technologies. Thus, the choice of radial versus nonradial efficiency 
measures seems to have a much higher impact on the number of peers 
- and therefore on the learning process - in NC technologies depending 
on sample size. If our hypothesis 𝐻1 is true, then it may be better to 
opt for a nonradial rather than a radial efficiency measure to simplify 
the learning process.

5.3. Peer similarity (working hypothesis 𝑊𝐻2)

We now consider the impact of the radial versus nonradial and 
C versus NC approaches on peer similarity as assessed through the 
Jaccard Similarity Index. Table  7 displays the Jaccard Similarity Index 
(JSI) for the five published and the nine TCC data sets. For each data 
set, the average JSI is calculated. The overall average is the average 
of these average values (as such it is not influenced by the respective 

https://pww.people.clemson.edu/Software/FEAR/fear.html
https://pww.people.clemson.edu/Software/FEAR/fear.html
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Table 4
Results of Li tests adjusted by Simar and Zelenyuk (2006).

Radial vs nonradial Convex vs nonconvex
Data set K C&DF NC&DF C&DF C&FL

C&FL NC&FL NC&DF NC&FL
1 2 3 4

Färe et al. (1985) 32 3.44 16.76 16.65 5.36
(0.002 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)

Haag et al. (1992) 41 6.08 -0.89 1.94 3.88
(<0.001 ***) (0.971) (0.031 **) (<0.002 ***)

Färe et al (1983) 86 6.30 -6.96 28.33 18.24
(<0.001 ***) (0.001 ***) (<0.001 ***) (<0.001 ***)

Cesaroni et al. (2011) 92 1.06 -5.06 25.72 28.43
(0.038 **) (0.086 *) (<0.001 ***) (<0.001 ***)

Fan et al. (1996) 471 14.51 75.06 85.32 16.08
(<0.001 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)

TCC subsample 8 40 -0.18 2.24 3.50 2.48
(0.653) (0.012 **) (0.163) (0.310)

TCC subsample 7 80 1.38 3.56 5.25 0.26
(0.033 **) (0.002 ***) (<0.001 ***) (0.194)

TCC subsample 6 160 10.12 -0.20 14.93 20.11
(<0.001 ***) (0.001 ***) (0.187) (<0.001 ***)

TCC subsample 5 319 24.67 14.79 35.58 41.50
(<0.001 ***) (<0.001 ***) (0.552) (<0.001 ***)

TCC subsample 4 638 -0.92 5.33 69.36 88.43
(0.066 *) (<0.001 ***) (<0.001 ***) (<0.001 ***)

TCC subsample 3 1275 14.72 123.77 134.77 154.05
(<0.001 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)

TCC subsample 2 2550 159.52 -79.96 346.13 403.35
(<0.001 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)

TCC subsample 1 5099 361.59 127.58 738.19 780.49
(<0.001 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)

TCC full sample 10198 1391.52 232.05 1744.80 1533.16
(<0.001 ***) (<0.001 ***) (<0.001 ***) (<0.001 ***)
Table 5
Results of KSW convexity tests.
Data set K KSW#1 KSW#2

1 2

Färe et al. (1985) 32 2.13 0.79
(0.044 **) (0.011 **)

Haag et al. (1992) 41 3.58 0.93
(0.001 ***) (0.001 ***)

Färe et al (1983) 86 2.93 0.88
(0.006 ***) (0.002 ***)

Cesaroni et al. (2011) 92 -0.56 0.25
(0.760) (0.412)

Fan et al. (1996) 471 -0.52 0.31
(0.760) (0.097 *)

TCC subsample 8 40 -2.28 0.59
(0.987) (0.021 **)

TCC subsample 7 80 -0.56 0.22
(0.743) (0.506)

TCC subsample 6 160 -1.03 0.42
(0.978) (0.015 **)

TCC subsample 5 319 -0.19 0.09
(0.736) (0.963)

TCC subsample 4 638 1.27 0.48
(<0.001 ***) (0.002 ***)

TCC subsample 3 1275 0.39 0.28
(0.007 ***) (0.237)

TCC subsample 2 2550 0.85 0.43
(<0.001 ***) (0.004 ***)

TCC subsample 1 5099 0.66 0.30
(0.011 **) (0.083 *)

TCC full sample 10198 1.05 0.50
(0.004 ***) (<0.001 ***)

sample sizes). Since all numbers vary between 0 and 100, a heat map 
is applied. The heat map colours range from green (JSI = 100) to red 
(JSI = 0).

For the radial versus nonradial comparison, and for the public data 
sets, the similarity is twice as high in the NC compared to the C 
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Table 6
Average number of peers.
Data set K C&DF C&FL NC&DF NC&FL

A⃝ B⃝ C⃝ D⃝

Färe et al. (1985) 32 2.13 1.75 1.00 1.00
Haag et al. (1992) 41 2.88 2.54 1.00 1.00
Färe et al (1983) 86 1.99 1.91 1.06 1.00
Cesaroni et al. (2011) 92 3.26 2.21 1.04 1.00
Fan et al. (1996) 471 3.96 2.21 1.00 1.00

Average 2.84 2.12 1.02 1.00

TCC subsample 8 40 2.17 1.95 1.43 1.18
TCC subsample 7 80 2.31 1.82 2.38 1.49
TCC subsample 6 160 2.97 2.71 3.52 1.99
TCC subsample 5 319 3.08 2.84 6.29 3.33
TCC subsample 4 638 3.58 2.75 10.34 4.16
TCC subsample 3 1275 3.40 2.76 13.05 3.14
TCC subsample 2 2550 3.85 3.16 22.64 5.29
TCC subsample 1 5099 4.05 3.39 36.99 7.16
TCC full sample 10198 3.80 3.27 41.99 6.13

Average 3.26 2.74 15.40 3.76

technology (an average JSI of 43 for C&DF versus C&FL, and 90 for 
NC&DF versus NC&FL). This difference in similarity is less pronounced 
in the TCC data sets, where we see an average of 59 in C technologies 
(column 1 ) against 68 in the NC technologies (column 2 ). There 
seems to be no clear impact of sample size in the C results (column 1 ), 
for both the public and the TCC data. However, there is a noticeable 
sample size effect in the NC results (column 2 ): the JSI gradually 
lowers from 89 to 56. Observe that for the two largest samples the 
similarity under NC is even lower than under C.

Peer similarity is much lower for the C versus NC comparison: 
although it is slightly better for the FL measurements (an average of 
26 for the public data sets and 21 for the TCC data sets, see column 
4 ), it is still markedly lower than the similarities found in the radial 
versus nonradial comparison. Here as well, sample size seems to play 



K. Kerstens et al. European Journal of Operational Research 329 (2026) 1052–1062 
Table 7
Average Jaccard Similarity Index (JSI).

Radial vs nonradial Convex vs nonconvex
Data set K C&DF NC&DF C&DF C&FL  

C&FL NC&FL NC&DF NC&FL  
1 2 3 4

Färe et al. (1985) 32 44 100 28 31  
Haag et al. (1992) 41 51 100 24 24  
Färe et al (1983) 86 30 95 22 21  
Cesaroni et al. (2011) 92 53 79 20 25  
Fan et al. (1996) 471 37 75 18 27  

Average 43 90 22 26  
TCC subsample 8 40 66 89 44 52  
TCC subsample 7 80 57 84 30 47  
TCC subsample 6 160 62 75 20 25  
TCC subsample 5 319 59 71 17 23  
TCC subsample 4 638 63 66 8 15  
TCC subsample 3 1275 62 60 8 15  
TCC subsample 2 2550 50 58 6 6  
TCC subsample 1 5099 53 54 4 4  
TCC full sample 10198 58 56 4 6  

Average 59 68 16 21  
an important role. For the C&DF and NC&DF comparison in the column 
3 , this could be a (partial) consequence of the increasing number of 
peers found in the NC&DF approach. However, for the C&FL and NC&FL 
comparison (column 4 ), where the number of peers is found to be of a 
comparable magnitude, the decrease in JSI follows an almost analogous 
pattern. For the largest TCC sample, the JSI reaches in both cases a 
remarkably low value: a JSI of 4 in the column 3 , and a JSI of 6 in 
the column 4 .

Clearly, from a learning from peers perspective, the similarity be-
tween C and NC approaches is substantially lower than the similarity 
between radial versus nonradial approaches (approximately two to 
three times lower). This discrepancy in learning between C and NC 
approaches is even further exacerbated with increasing sample size and 
can reach dramatically poor levels of similarity. Overall, and especially 
for large data sets, the choice of technology seems to be crucial for the 
peer identification process, though the use of nonradial measures seems 
to slightly alleviate this concern.

5.4. Vector-dominance of peers (working hypothesis 𝑊𝐻3)

Given the weak peer similarity found for the C versus NC com-
parison, it is relevant and useful to add an additional metric that 
provides further insight in the learning from peers divergences. The 
Peer Dominance Index (recall that the PDI is calculated as the number 
of dominating C DEA peers divided by the number of C DEA peers, and 
only for non-efficient DMUs (see Section 3.3)) conceptually broadens 
the JSI approach and provides additional information for the C versus 
NC comparison. The PDI varies between 0 and 100 percent, and can 
therefore also be reported in the form of a heat map in Table  8. The 
column headers 3  and 4  relate to the C-NC comparisons depicted 
in Fig.  1. Since there is (in contrast with the previous comparisons) 
only one type of efficient peers, we only consider the DMUs with C 
learning potential, i.e. the observations with C efficiency scores less 
than 1. The number of C-inefficient DMUs is displayed in the column 
‘‘L (learning)’’. Note that this PDI is always (by definition) 100 percent 
for the NC method: therefore, it is not reported.

Results show that the proportion of vector-dominating peers is 
clearly limited and can be labelled as ranging from almost non-existing 
to rather weak. In the case of the five published data sets, the PDI is on 
average 6 for the DF measure, and 9 for the FL measure. For the Haag 
et al. (1992) data set, not a single dominating peer is found. There 
may seem to be an increase of the PDI with increasing sample size, but 
since the model specifications for the public data sets are substantially 
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different (see Table  1), it is difficult to draw meaningful conclusions 
from this.

In the TCC samples, the PDI is on average 20 for the DF measure 
and 26 for the FL measure. For both measures, there is a clear and 
consistent decline in peer dominance with an increasing sample size. 
The PDI drops from 31 to 18 for the C&DF results (meaning that, 
on average, only 18% of the C peers is also dominating the DMU 
under observation) and from 42 to 19 for the FL measure. Furthermore, 
the FL measure clearly outperforms the DF measure in terms of peer 
dominance. However, as sample size increases, the FL measure seems 
to converge to similar PDI values.

In sum, our empirical analysis reveals that the large majority of best 
practices do not outperform the inefficient DMUs in terms of vector-
dominance. For the TCC data with the most favourable overall average, 
about only 1/5 of the C&DF peers, identified with the objective to guide 
the DMUs towards better performance, are actually dominating these 
DMUs. The issue of non-dominating peers seems to be less prominent 
for the nonradial FL measure: about 1/4 of the peers are vector-
dominating. For both measures, there seems to be an exacerbating 
impact of decreasing sample size.

Månsson (2003) is the only study known to us reporting vector-
dominance results. For a small sample of 30 observations and 8 input–
output dimensions, 17 observations are inefficient: only 2 among these 
are dominated by a single observation. Thus, our results are not excep-
tional in any sense.

5.5.  Learning classes

In Appendix A we zoom in further on the obtained results by 
introducing the concept of learning classes. For the inefficient DMU, 
the divergences in the learning process can be classified according to 
the extent in which the identified peers are common. For each of the 
comparisons 1  till 4 , we identify 3 learning classes: (i) ‘‘all peers 
are common’’ (JSI = 100 for all observations), (ii) ‘‘some peers are 
common’’ (0 <JSI <100 for all observations), and (iii) ‘‘no common 
peers’’ (JSI = 0 for all observations). Table A1 provides an explanatory 
overview of these learning classes, while their detailed reporting is 
found in Tables A2 till A5.

6. Conclusions

The main topic of this contribution is to verify how substantial 
differences between technical efficiencies on C and NC technologies 
translate themselves into different peers and learning possibilities. 
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Table 8
Average Peer Dominance Index (PDI).
Data set K L (learning) L (learning) C&DF C&FL 

C&DF C&FL 3 4

Färe et al. (1985) 32 23 23 2 4  
Haag et al. (1992) 41 31 31 0 0  
Färe et al. (1983) 86 68 70 5 4  
Cesaroni et al. (2011) 92 79 79 8 14  
Fan et al. (1996) 471 421 422 13 21  
Average 6 9  
TCC subsample 8 40 30 31 31 42  
TCC subsample 7 80 59 64 27 46  
TCC subsample 6 160 124 148 19 21  
TCC subsample 5 319 243 299 22 24  
TCC subsample 4 638 609 621 14 20  
TCC subsample 3 1275 1213 1244 18 23  
TCC subsample 2 2550 2427 2534 17 19  
TCC subsample 1 5099 4866 5079 17 16  
TCC full sample 10198 9749 10174 18 19  
Average 20 26  
Section 2 has defined technologies as well as the traditional radial 
efficiency measure along with the alternative nonradial Färe and Lovell 
(1978) efficiency measure. Section 3 has developed three working 
hypotheses on how the analysis of peers in frontier technologies fa-
cilitates learning. To empirically test these three working hypotheses 
we define three metrics that can help in quantifying the empirical 
effects. Section 4 describes five existing secondary data sets with a 
variety of specifications and sample sizes. These existing data sets are 
supplemented with one large sample of Belgian traffic control centres.

Section 5 reports the detailed empirical results. Evaluating the 
efficiency distributions we find that the divergences in efficiency are 
more pronounced for the C versus NC comparison relative to the radial 
versus nonradial efficiency measures. Furthermore, for the radial versus 
nonradial efficiency measures the divergence is highly dependent on 
sample size.

In terms of the number of peers working hypothesis 𝑊𝐻1, radial 
efficiency measures have overall more peers than nonradial efficiency 
measures on C but especially on NC technologies. Thus, one may 
consider opting for a nonradial instead of a radial efficiency measure to 
simplify the learning process for managers and policy makers (e.g., reg-
ulators). Furthermore, the peer similarity working hypothesis 𝑊𝐻2 as 
measured by the Jaccard Similarity Index between radial versus non-
radial approaches is substantially higher than the similarity between 
C and NC approaches. The latter similarity can become extremely low 
under large sample sizes, though this effect is slightly mitigated under 
nonradial measures. For managers and policy makers peer similarity is 
highest for radial versus nonradial efficiency under NC, and for C versus 
NC under a nonradial efficiency measure: thus, the choice of efficiency 
measure makes least impact under NC and the choice of C versus NC 
technology has the least effect under a nonradial efficiency measure, 
respectively. 

While under a NC technology inefficiency is always related to 
vector-dominance, our empirical analysis reveals that the large ma-
jority of best practices under a C technology do not outperform the 
inefficient DMUs in terms of vector-dominance or peer dominance 
(working hypothesis 𝑊𝐻3). On average, at most about only 1/5 of the 
C&DF peers and about 1/4 of the C&FL peers are vector-dominating, 
respectively, with a noticeable impact of increasing sample size. This 
result implies that convexity may greatly hinder the learning processes: 
this is a managerial argument questioning convexity. Apart from the 
reasons exposed in the Introduction, when learning from peers is crucial 
for managers and policy makers, then one should be critical w.r.t. C: we 
recommend using the Simar and Zelenyuk (2006) and the Kneip et al. 
(2016) tests.

Overall, if one wants to minimize the number of peers, then it 
is clear that the nonradial FL efficiency measure is a better choice 
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than the traditional radial one. Peer similarity over model variations is 
higher between radial versus nonradial approaches than between C and 
NC approaches. Finally, traditional C methods have a rather low peer 
dominance compared to the NC approach. Thus, the combination of the 
logical, the statistical, and the managerial arguments against convexity 
is rather overwhelming in our point of view. Perfect time divisibility is 
very implausible on logical grounds in almost all application contexts. 
Most but not all statistical tests reject convexity in our particular 
empirical samples. It is important to apply such tests of convexity in 
all empirical applications. Finally, the managerial concerns developed 
in this paper regarding the learning from peers show that convexity 
may greatly hinder the learning processes. Overall, we think convexity 
is an axiom that should be scrutinized in all these three respects in all 
future methodological innovations as well as in empirical applications.

One potential avenue for future research is to investigate how 
the learning of peers works under C and NC cost function estimates. 
Moreover, it could be good to replicate the current results with big 
to huge data sets solely (instead of including also small data sets as 
we have done). Furthermore, for robustness sake it could be good to 
duplicate results with another resemblance measure than the JSI. One 
limitation of the analysis –pointed out by a referee– is that we treat 
all efficient observations on an equal footing: this may be remedied in 
future research, e.g., by using economic value (e.g., cost) functions, as 
already suggested by the first point above.
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